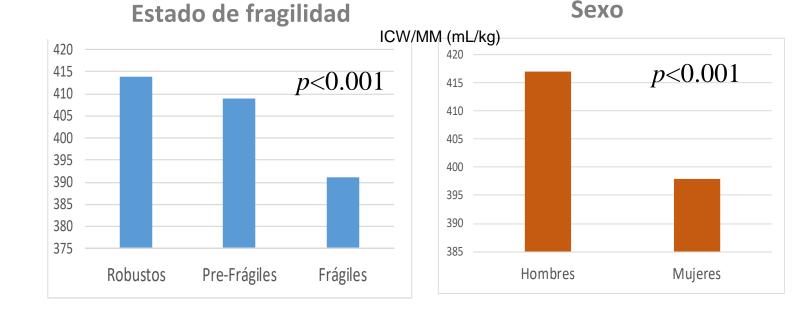

Revisión de causas y consecuencias funcionales de la deshidratación en el anciano. Impacto de la deshidratación intracelular en marcadores de fragilidad.

Lorenzo I, Serra-Prat Mateu

Introducción

- El agua es el componente principal del cuerpo y representa aproximadamente el 76% de la masa muscular.
- El músculo es el órgano más extenso del cuerpo, representa aproximadamente el 40% del peso corporal total y el 50% de la masa magra corporal (MM).
- La prevalencia de la deshidratación en los ancianos se ha estimado en 20-30% y se asocia con una mayor discapacidad, morbilidad y mortalidad [1,2,3,4,5,6].
- Con el envejecimiento, hay una disminución progresiva en el agua corporal total (TBW) y el agua intracelular (ICW) paralela a una pérdida de masa muscular y fuerza muscular relacionada con la edad.

Objetivo


El objetivo de este estudio fue explorar los posibles vínculos entre la relación ICW / MM (como indicador de la calidad muscular y la hidratación celular) y la fuerza muscular, el rendimiento funcional, la fragilidad y otras características clínicas en las personas mayores.

Metodología

- Diseño: estudio observacional de corte transversal.
- Población de estudio: >70 años .
- El agua intracelular (ICW), y la masa magra (MM) se estimaron mediante análisis de impedancia bioelèctrica y la relación ICW / MM se calculó como ml / kg.
- Se evaluó: a) datos antropométricos (peso, talla, pliegues...);
 b)de estilo de vida: encuesta de nutrición, hidratación, ejercicio físico, hábitos;
 c) Enfermedades y medicación crónica.
- También se evaluó la fuerza de agarre de la mano, la velocidad de la marcha, el índice de Barthel y el test Up and Go.
- El estado de fragilidad se estableció de acuerdo con los criterios de L Fried.

Resultados

N=40	Media (SD) or N (%)		
Edad	69,7 (2,7)		
Sexo (% mujeres)	23 (57,5%)		
Índice de masa corporal	26,1 (3,3)		
Nº comorbilidades	3,8 (1,5)		
Nº medicinas	4,9 (3,7)		
Barthel score	98,2 (6)		
Posible malnutricion (% MNA-sf 8-11)	18 (5,9%)		

Relación entre la relación ICW / MM (en ml / kg) e indicadores de fuerza muscular y capacidad funcional (variables continuas).

r s	p	B*	p
397 <(0.001	0.117	< 0.001
317 <	0.001	0.059	< 0.001
311 <	0.001	0.003	< 0.001
.326 <(0.001 -	-0.031	< 0.001
268 <(0.001	0.283	< 0.001
	397 < 317 < 311 < 326 < 326	397 <0.001 317 <0.001 311 <0.001 326 <0.001	397 <0.001 0.117 317 <0.001 0.059 311 <0.001 0.003 326 <0.001 -0.031

Resultados del análisis multivariado para el efecto independiente de la relación ICW / MM (en ml / kg) sobre la fuerza muscular, la capacidad funcional y la fragilidad

Variables independientes en el modelo	Fuerza de agarre		Barthel Score		Fragilidad	
en ei modeio	de la mano (kg)					
	β (95% CI)	p	β (95% CI)	p	OR (95% CI)	
ICW/MM ratio (mL/kg)	0.027 (0.01; 0.05)	0.007	0.031 (0.01; 0.05)	0.007	0.98 (0.97; 0.99)	
Edad	-0.121 (-0.28; 0.04)	0.146	-0.183 (-0.37; -0.001)	0.048	1.03 (0.92; 1.14)	
Nº de comorbilidades	-0.857 (-1.15; -0.57)	< 0.001	-0.992 (-1.32; -0.67)	< 0.001	1.74 (1.42; 2.13)	
Masa magra (Kg)	0.225 (0.12; 0.33)	< 0.001	-0.019 (-0.14; 0.10)	0.755	1.04 (0.96; 1.12)	

- Nuestros resultados principales indican que la relación ICW / MM disminuye con la edad en las personas mayores, y la relación ICW / MM más alta se asocia independientemente con una mayor fuerza muscular, una mejor capacidad funcional y un menor riesgo de fragilidad.
- Proponemos la relación ICW / MM como un indicador del volumen intracelular en la MM, que puede reflejar la hidratación celular, lo que indica la calidad de MM e, indirectamente, la calidad de la masa muscular.

Bibliografia

- 1. Wotton K, Crannitch K, Munt R. Prevalence, risk factors and strategies to prevent dehydration in older adults. Contemp. Nurse 2008, 31, 44–56.
- 2. Hooper L, Bunn D, Jimoh FO, Fairweather-Tait SJ. Water-loss dehydration and aging. Mech. Ageing Dev. 2014, 136, 50–58, doi:10.1016/j.mad.2013.11.009.
 - Cowen LE, Hodak SP, Verbalis JG. Age-associated abnormalities of water homeostasis. Endocrinol Metab Clin North Am. 2013 Jun;42(2):349-70. doi: 10.1016/j.ecl.2013.02.005.
- Schwartz L, Guais A, Pooya M, Abolhassani M. Is inflammation a consequence of extracellular hyperosmolarity?. J Inflamm (Lond). 2009 Jun 23;6:21. doi: 10.1186/1476-9255-6-21.
 Brocker, C.; Thompson, D.C.; Vasiliou, V. The role of hyperosmotic stress in inflammation and disease. Biomol. Concepts 2012, 3, 345-364. doi:10.1515/bmc-2012-001.

6. Neuhofer W. Role of NFAT5 in Inflammatory Disorders Associated with Osmotic Stress. Current Genomics, 2010, 11, 584-590.

VII CONGRÉS INTERNACIONAL